
Chase Joyner

801 Homework 3

September 29, 2015

Problem 1:

Let y11, y12, ..., y1r be N(µ1, σ
2) and y21, y22, ..., y2s be N(µ2, σ

2) with all yij ’s independent. Write
this as a linear model. Find estimates of µ1, µ2, µ1 − µ2, and σ2. Using Appendix E, and Exercise
2.1, form an α = .01 test for H0 : µ1 = µ2. Similarly, form 95% confidence intervals for µ1−µ2 and
µ1. What is the test for H0 : µ1 = µ2 + ∆, where ∆ is some known fixed quantity? How do these
results compare with the usual analysis for two independent samples?

Solution: Writing this as linear model, we have

Y = Xβ + ε,

where

Y =



y11
y12
...
y1r
y21
...
y2s


(r+s)×2

, X =



1 0
1 0
...

...
1 0
0 1
...

...
0 1


(r+s)×2

, β =

[
µ1
µ2

]
, ε =


ε1
ε2
...

εr+s

 ,

and ε ∼ Nr+s(0, σ
2I). We now find estimates of µ1, µ2, and µ1 − µ2. First, note that the

o.p.m M onto C(X) is

M = X(X ′X)−X ′ =

[
1
r r×r 0r×s
0s×r

1
s s×s

]
,

where 1
r r×r represents an r × r matrix of all entries 1

r and similar idea for 1
s s×s. Also notice

that if ρ′ is the matrix

ρ′ =

1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0
1 0 · · · 0 −1 0 · · · 0


3×(r+s)

,

then

ρ′Xβ =

 µ1
µ2

µ1 − µ2

 .
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By Corollary 2.2.3, the LSE of ρ′Xβ is

ρ′MY =

1
r · · · 1

r 0 · · · 0
0 · · · 0 1

s · · · 1
s

1
r · · · 1

r −1
s · · · −1

s

Y =

 1
r

∑r
i=1 y1i

1
s

∑s
i=1 y2i

1
r

∑r
i=1 y1i −

1
s

∑s
i=1 y2i

 =

 y1
y2

y1 − y2

 .
Therefore, an estimate of µ1 is µ̂1 = y1, an estimate of µ2 is µ̂2 = y2, and an estimate of
µ1 − µ2 is y1 − y2. Now we find an estimate of σ2. Since r(X) = 2 and Cov(ε) = σ2I, then
by theorem 2.2.6,

MSE =
Y ′(I −M)Y

(r + s)− 2
=

∑r
i=1(y1i − y1)2 +

∑s
i=1(y2i − y2)2

(r + s)− 2

is an estimate of σ2. Now we form an α = .01 test for H0 : µ1 = µ2. First, rewrite the null
hypothesis as H0 : µ1 − µ2 = 0 and note by exercise 2.1 and Appendix E

λ′β̂ − λ′β√
MSEλ′(X ′X)−λ

∼ t (1− α/2, dfE) .

Now if λ′ =
[
1 −1

]
, then under the null hypothesis,

T =
y1 − y2 − 0√
MSE

(
1
r + 1

s

)
should be an observation from t(1− α/2, r+ s− 2). Therefore, reject H0 if |T | ≥ t(.995, (r+
s)− 2). Also by Appendix E, a 95% confidence interval for µ1 − µ2 is[

y1 − y2 ± t(.975, (r + s)− 2)

√
MSE

(
1

r
+

1

s

)]
.

Also a 95% confidence interval for µ1 is[
y1 ± t(.975, (r + s)− 2)

√
MSE · 1

r

]
.

Lastly, we develop the test for H0 : µ1 = µ2 + ∆. Similarly, we construct the statistic

T =
y1 − y2 −∆√
MSE

(
1
r + 1

s

)
where

MSE =

∑r
i=1(y1i − y1)2 +

∑s
i=1(y2i − y2)2

r + s− 2
=

(r − 1)s21 + (s− 1)s22
r + s− 2

.

Reject H0 if |T | ≥ t(1− α/2, (r + s)− 2). Therefore, these results are the same as the usual
analysis for two independent samples.
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Problem 2:

Let y1, y2, ..., yn be independent N(µ, σ2). Write a linear model for these data. For the rest of the
problem, use the results of Chapter 2, Appendix E, and Exercise 2.1. Form an α = 0.01 test for
H0 : µ = µ0, where µ0 is some known fixed number and form a 95% confidence interval for µ. How
do these results compare with the usual analysis for one sample?

Solution: Writing this as a linear model, we have

Y = Xβ + ε,

where

Y =


y1
y2
...
yn

 , X =


1
1
...
1


n×1

, β =
[
µ
]
, ε =


ε1
ε2
...
εn

 ,
and ε ∼ Nn(0, σ2I). We showed in problem 1 that an estimate of µ is µ̂ = y. Note that the
projection matrix is

M = X(X ′X)−X ′ =
[
1
n

]
n×n ,

i.e. M is an n× n matrix of all entries 1
n , and so the MSE becomes

MSE =
Y ′(I −M)Y

n− 1
=

∑n
i=1(yi − y)2

n− 1
= s2.

Then, taking λ′ = 1, we know that under the null hypothesis

T =
y − µ0√
MSE( 1

n)
=
y − µ0√
s2/n

should be an observation from t(.995, n − 1). Therefore, reject H0 if |T | ≥ t(.995, n − 1). A
95% confidence interval for µ is[

y ± t(.975, n− 1)

√
MSE · 1

n

]
.

These results coincide with the usual analysis for one sample.
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Problem 3:

(a) Show that AV A′ = AV = V A′.

(b) Show that A′V −1A = A′V −1 = V −1A.

(c) Show that A is the same for any choice of (X ′V −1X)−.

Solution: For this problem, A = X(X ′V −1X)−X ′V −1, where V is a covariance matrix and
hence is symmetric.

(a) It is clear that AV = V A′ because

AV = X(X ′V −1X)−X ′

and
V A′ = V (V −1X(X ′V −1X)−X ′) = X(X ′V −1X)−X ′ = AV.

Now,

AV A′ =
(
X(X ′V −1X)−X ′V −1

)
V
(
X(X ′V −1X)−X ′V −1

)′
= X(X ′V −1X)−(X ′V −1X)(X ′V −1X)−X ′

= X(X ′V −1X)−X ′

= AV = V A′.

Therefore, AV A′ = AV = V A′.

(b) It is clear that A′V −1 = V −1A because

A′V −1 = V −1X(X ′V −1X)−X ′V −1

and
V −1A = V −1X(X ′V −1X)−X ′V −1 = A′V −1.

Now,

A′V −1A =
(
X(X ′V −1X)−X ′V −1

)′
V −1

(
X(X ′V −1X)−X ′V −1

)
= V −1X(X ′V −1X)−(X ′V −1X)(X ′V −1X)−X ′V −1

= V −1X(X ′V −1X)−X ′V −1

= A′V −1 = V −1A.

Therefore, A′V −1A = A′V −1 = V −1A.
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(c) Note that since V is positive definite, we can write V −1 = Q′Q for some Q. Then,

X ′V −1X = X ′Q′QX = (QX)′(QX) := (X?)′X?.

Now assume that G and H are generalized inverses of (X ′V −1X), i.e. of (X?)′X?. Then,
by Lemma B.43,

X?G(X?)′ = X?H(X?)′

QXGX ′Q′ = QXHX ′Q′

QXGX ′Q′Q = QXHX ′Q′Q

QXGX ′V −1 = QXHX ′V −1

Q′QXGX ′V −1 = Q′QXHX ′V −1

V −1XGX ′V −1 = V −1XHX ′V −1

XGX ′V −1 = XHX ′V −1.

Now, recall thatA = X(X ′V −1X)−X ′V −1. Then, we haveA = XGX ′V −1 = XHX ′V −1.
Therefore, A is the same for any choice of (X ′V −1X)−.

Problem 4:

Consider the model
Y = Xβ + b+ e, E(e) = 0, Cov(e) = σ2I,

where b is a known vector. Show that Proposition 2.1.9: A linear estimate a0 + a′Y is unbiased for
λ′β if and only if a0 = 0 and a′X = λ′. is not valid for this model by producing a linear unbiased
estimate of ρ′Xβ, say a0 + a′Y , for which a0 6= 0. Hint: Modify ρ′MY .

Solution: We know that

E(a0 + a′Y ) = a0 + a′E(Y ) = a0 + a′(Xβ + b).

Then, take a0 = −a′b and a′ = ρ′. This gives that

E(a0 + a′Y ) = a0 + a′Xβ + a′b = a′Xβ = ρ′Xβ,

that is to say that a0 + a′Y is unbiased for ρ′Xβ, but a0 6= 0. Therefore, proposition 2.1.9 is
not valid.
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Problem 5:

Consider the model yi = β1xi1 + β2xi2 + ei, where ei
iid∼ N(0, σ2). Use the data given below to

answer (a) through (d).

(a) Estimate β1, β2, and σ2.

(b) Give 95% confidence intervals for β1 and β1 + β2.

(c) Perform an α = .01 test for H0 : β2 = 3.

(d) Find an appropriate P value for the test of H0 : β1 − β2 = 0.

Solution: First, note that by the data given, we have

Y =



82
79
74
83
80
81
84
81


, X =



10 15
9 14
9 13
11 15
11 14
10 14
10 16
12 13


.

(a) Let β = (β1, β2)
′. Then, we know the LSE of β is

β̂ = (X ′X)−X ′Y =

[
2.65
3.74

]
.

Also, we know the LSE of σ2 is

MSE =
Y ′(I −M)Y

n− r
,

where M = X(X ′X)−X ′ and r = r(X). Therefore,

σ̂2 = MSE =
Y ′(I −M)Y

8− 2
= 4.70.

Therefore, our estimates are β̂1 = 2.65, β̂2 = 3.74, and σ̂2 = 4.70.

(b) Let λ1 = (1, 0) and λ2 = (1, 1)′. Note that

(X ′X)− =
1

19712

[
1632 −1168
−1168 848

]
.

Then, a 95% confidence interval for β1 is[
β̂1 ± t(.975, 8− 2)

√
MSE · λ′1(X ′X)−λ1

]
= [1.124, 4.176] .

Also, a 95% confidence interval for β1 + β2 is[
β̂1 + β̂2 ± t(.975, 8− 2)

√
MSE · λ′2(X ′X)−λ2

]
= [5.937, 6.843] .
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(c) Take λ = (0, 1)′. Then, we calculate the test statistic

T =
β̂2 − 3√

MSE · λ′(X ′X)−λ
=

3.74− 3√
4.70 · 848

19712

= 1.646.

Since |T | 6≥ t(.995, 6) = 3.707, we fail to reject H0.

(d) Take λ = (1,−1). Then, we calculate the test statistic

T =
β̂1 − β̂2 − 0√

MSE · λ′(X ′X)−λ
=

−1.09√
4.70 · 4816

19712

= −1.017.

Then, the P value is P = P (|T | ≥ 1.017) = 2P (T < −1.017) = 0.348.

Problem 6:

Consider the model

yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β22x

2
i2 + β12xi1xi2 + ei,

where the predictor variables take on the values given. Show that β0, β1, β2, β11 + β22, and β12 are
estimable and find (nonmatrix) algebraic forms for the estimates of these parameters. Find the
MSE and the standard errors of the estimates.

Solution: For this model, we have

Y =



y1
y2
y3
y4
y5
y6
y7


, X =



1 1 1 1 1 1
1 1 −1 1 1 −1
1 −1 1 1 1 −1
1 −1 −1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


, β =



β0
β1
β2
β11
β22
β12

 .

It will be useful to identify a basis for C(X ′). Notice that the row reduced form of X is

R =



1 1 1 1 1 1
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


.

Then, a basis for C(X ′) are the first five rows of R. Denote these rows as r1, r2, r3, r4, and
r5, respectively.
Take Λ0 =

[
1 0 0 0 0 0

]′
. Then,

Λ′0β = β0
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and Λ0 = r1 − r2 − r3 − r4. Therefore, Λ0 ∈ C(X ′) and so β0 is estimable.
Take Λ1 =

[
0 1 0 0 0 0

]′
. Then,

Λ′1β = β1

and Λ1 = r2 − r5. Therefore, Λ1 ∈ C(X ′) and so β1 is estimable.
Take Λ2 =

[
0 0 1 0 0 0

]′
. Then,

Λ′2β = β2

and Λ2 = r3. Therefore, Λ2 ∈ C(X ′) and so β2 is estimable.
Take Λ3 =

[
0 0 0 1 1 0

]′
. Then,

Λ′3β = β11 + β22

and Λ3 = r4. Therefore, Λ3 ∈ C(X ′) and so β11 + β22 is estimable.
Lastly, take Λ4 =

[
0 0 0 0 0 1

]′
. Then,

Λ′4β = β12

and Λ4 = r5. Therefore, Λ4 ∈ C(X ′) and so β12 is estimable. To calcualte the estimates, we
first calculate a generalized inverse to be

(X ′X)− =
1

48



16 0 0 −8 −8 0
0 12 0 0 0 0
0 0 12 0 0 0
−8 0 0 7 7 0
−8 0 0 7 7 0
0 0 0 0 0 12

 .

Then, the estimates can be found by using the normal equations, which gives

β̂ = (X ′X)−X ′Y =



1
3(y5 + y6 + y7)

1
4(y1 + y2 − y3 − y4)
1
4(y1 − y2 + y3 − y4)

1
8(y1 + y2 + y3 + y4)− 1

6(y5 + y6 + y7)
1
8(y1 + y2 + y3 + y4)− 1

6(y5 + y6 + y7)
1
4(y1 − y2 − y3 + y4)

 =



β̂0
β̂1
β̂2
β̂11
β̂22
β̂12


.

Then, we have the estimate of β̂11 + β̂22 = 1
4(y1 + y2 + y3 + y4)− 1

3(y5 + y6 + y7).
To find the MSE, we must first find (I −M). We calculate M to be

M = X(X ′X)−X ′ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1

3
1
3

1
3

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3


.
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Then, we get (I −M) to be

I −M =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 2

3 −1
3 −1

3
0 0 0 0 −1

3
2
3 −1

3
0 0 0 0 −1

3 −1
3

2
3


.

Therefore, we have that MSE is

MSE =
Y ′(I −M)Y

7− 5
=

1

3
(y25 − y5y6 − y5y7 + y26 − y6y7 + y27).

Lastly, we can calculate the SE of these estimates by

SE =
√
MSEλ′(X ′X)−λ.

Using the lambdas when showing estimability, we have

SE
(
β̂0

)
=
√
MSE · Λ′0(X ′X)−Λ0 =

√
MSE · 1

3

SE
(
β̂1

)
=
√
MSE · Λ′1(X ′X)−Λ1 =

√
MSE · 1

4

SE
(
β̂2

)
=
√
MSE · Λ′2(X ′X)−Λ2 =

√
MSE · 1

4

SE
(
β̂11 + β̂22

)
=
√
MSE · Λ′3(X ′X)−Λ3 =

√
MSE · 7

12

SE
(
β̂12

)
=
√
MSE · Λ′4(X ′X)−Λ4 =

√
MSE · 1

4
.
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